Как соотносится строение бактериальной клетки и ее функции
Содержание:
- Характеристика периплазматического пространства
- Коммуникативная функция цитоплазматической мембраны
- Функции
- Что такое клеточная мембрана
- Капсула
- Клеточный цикл
- Что такое клеточная мембрана
- Строение
- Что представляет собой оболочка?
- Окрашивание по Граму
- Функции
- Мезосомы
- Строение
- Границы клеточного содержимого
- Строение
Характеристика периплазматического пространства
Между бактериальной стенкой и мембраной цитоплазмы находится периплазматическое пространство, которое состоит из ферментов. Этот компонент является обязательной структурой, он составляет 10-12% сухой массы бактерии. Если мембрана по какой-то причине разрушается, клетка гибнет. Генетическая информация располагается непосредственно в цитоплазме, не отделяется от неё ядерной оболочкой.
Независимо от того, является микроб грамположительным или грамотрицательным, это осмотический барьер микроорганизма, транспортер органических и неорганических молекул вглубь клетки. Доказана и определенная роль периплазмы в росте микроорганизма.
Коммуникативная функция цитоплазматической мембраны
К числу коммуникативных функций стоит отнести транспорт и рецепцию. Эти оба качества характерны именно для плазматической мембраны и кариолеммы. Мембрана органелл не всегда имеет рецепторы или пронизана транспортными каналами, а у кариолеммы и цитолеммы эти образования имеются. Именно посредством их осуществляется реализация данных коммуникативных функций.
Транспорт реализуется двумя возможными механизмами: с затратой энергии, то есть активным путем, и без затрат, простой диффузией. Однако клетка может транспортировать вещества и путем фагоцитоза или пиноцитоза. Это реализуется путем захвата облака жидкости или твердой частицы выпячиваниями цитоплазмы. Тогда клетка как будто руками захватывает частицу или каплю жидкости, втягивая ее внутрь и образуя вокруг нее цитоплазматический слой.
Функции
- Барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
- Транспортная — через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембрану обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке оптимального pH и концентрации ионов, которые нужны для работы клеточных ферментов.Частицы, по какой-либо причине неспособные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортёры) и белки-каналы или путём эндоцитоза.При пассивном транспорте вещества пересекают липидный бислой без затрат энергии так как происходит перенос веществ из области высокой концентрации в область низкой, то есть против градиента концентрации (градиент концентрации указывает направление увеличения концентрации) путём диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.Активный транспорт требует затрат энергии, так как происходит перенос веществ из области низкой концентрации в область высокой, то есть по градиенту концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивает в клетку ионы калия (K+) и выкачивает из неё ионы натрия (Na+).
- Матричная — обеспечивает определённое взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие.
- Механическая — обеспечивает автономность клетки, её внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечении механической функции имеют клеточные стенки, а у животных — межклеточное вещество.
Ультраструктура хлоропласта: 1. наружная мембрана 2. межмембранное пространство 3. внутренняя мембрана (1+2+3: оболочка) 4. строма (жидкость) 5. тилакоид с просветом (люменом) внутри 6. мембрана тилакоида 7. грана (стопка тилакоидов) 8. тилакоид (ламела) 9. зерно крахмала 10. рибосома 11. пластидная ДНК 12. пластоглобула (капля жира)
Энергетическая — при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки.
Рецепторная — некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.
Ферментативная — мембранные белки нередко являются ферментами
Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
Осуществление генерации и проведения биопотенциалов.С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.
Маркировка клетки — на мембране есть антигены, действующие как маркеры — «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединёнными к ним разветвлёнными олигосахаридными боковыми цепями), играющие роль «антенн»
Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.
Что такое клеточная мембрана
Клеточная мембрана — это биологическая мембрана, которая отделяет внутреннюю часть клетки от внешней среды. Клеточная мембрана также называется плазматическая мембрана а также цитоплазматическая мембрана, Он избирательно проницаем для таких веществ, как ионы и органические молекулы. Клеточная мембрана поддерживает постоянную среду внутри протоплазмы, контролируя проникновение веществ внутрь и наружу клетки. Это также защищает клетку от окружающей среды.
Структура клеточной мембраны
Структура мембраны описывается моделью жидкостной мозаики. Клеточная мембрана состоит из липидного бислоя со встроенными в него белками. Липидный бислой рассматривается как двумерная жидкость, в которой молекулы липида и белка более или менее легко диффундируют в нем. Образуется при самосборке липидных молекул. Эти липиды являются амфипатическими фосфолипидами. Их гидрофобные «хвостовые» области скрыты от окружающей воды или гидрофильной среды двухслойной структурой. Таким образом, гидрофильные головки взаимодействуют с внутриклеточными / цитозольными или внеклеточными лицами. Благодаря этому образуется непрерывный сферический липидный бислой. Следовательно, гидрофобные взаимодействия рассматриваются как основные движущие силы для образования липидного бислоя.
Структура липидного бислоя предотвращает проникновение полярных растворенных веществ в клетку. Но пассивная диффузия неполярных молекул разрешена. Следовательно, трансмембранные белки функционируют либо как поры, каналы или ворота для диффузии полярных растворенных веществ. Фосфатидилсерин концентрируется на мембране, чтобы создать дополнительный барьер для заряженных молекул.
Мембранные структуры, такие как подосома, кавеола, очаговая адгезия, инвадоподиум и различные типы клеточных соединений, присутствуют в мембране. Это называется «supramembrane”Структуры, которые обеспечивают связь, клеточную адгезию, экзоцитоз и эндоцитоз. Под клеточной мембраной цитоскелет находится в цитоплазме. Цитоскелет обеспечивает леса для закрепления мембранных белков. Подробная схема клеточной мембраны показана на Рисунок 1.
Рисунок 1: Подробная схема клеточной мембраны
Состав клеточной мембраны
Клеточная мембрана в основном состоит из липидов и белков. В клеточной мембране можно найти три класса амфипатических липидов: фосфолипиды, гликолипиды и стеролы. Фосфолипиды являются наиболее распространенным типом липидов среди них. Холестерин обнаружен диспергированным по всей мембране в клетках животных.
Липосомы найдены ли липидные везикулы в клеточной мембране; они заключены в круглые карманы липидным бислоем. Углеводы можно найти в виде гликопротеинов и гликолипидов. 50% клеточной мембраны состоит из белков. Белки могут быть обнаружены в мембране трех типов: цельные или трансмембранные белки, закрепленные на липидах белки и периферические белки.
Функция клеточной мембраны
Клеточная мембрана физически отделяет цитоплазму от ее внеклеточной среды. Он также закрепляет цитоскелет, обеспечивая форму клетки. С другой стороны, клеточная мембрана прикрепляется к другим клеткам ткани, обеспечивая механическую поддержку клетки.
Клеточная мембрана избирательно проницаема, регулируя постоянную внутреннюю среду для функционирования клетки. Движение через клеточную мембрану может происходить как при пассивной, так и при активной диффузии. Четыре клеточных механизма могут быть идентифицированы в клеточной мембране. Небольшие молекулы, такие как углекислый газ, кислород и ионы, перемещаются через мембрану путем пассивного осмоса и диффузии. Питательные вещества, такие как сахар, аминокислоты и метаболиты, перемещаются пассивно через трансмембранные белковые каналы. Аквапорины являются своего рода белковыми каналами, которые транспортируют воду путем облегченной диффузии. Поглощение молекул в клетку путем их поглощения называется эндоцитозом. Твердые частицы поглощаются фагоцитозом, а небольшие молекулы и ионы поглощаются пиноцитозом. Некоторые непереваренные остатки удаляются из клетки путем инвагинации и образования пузырька. Этот процесс называется экзоцитозом.
Капсула
Помимо основных структур, в цитоплазме выделяют твердые, газообразные и жидкие включения ─ это продукты метаболических процессов и запас питательных веществ.
Капсула представляет собой слизистую, которая имеет четкие разграничения от окружающей среды и тесно связана с клеточной стенкой. В клетках животных такого органоида нет. Увидеть ее можно только под специальным световым микроскопом путем окрашивания. Она не является жизнеобразующим органоидом клетки, при ее потере микроорганизм не теряет своей жизнеспособности. У такой бактерии, как лейконосток, в одну капсулу входит не одна микробная клетка. В капсуле сосредоточены антигены, которые определяют особенность, вирулентность и способность вызывать иммунный ответ бактерий.
Также она защищает микроорганизм от таких негативных воздействий:
- высыхания;
- механического воздействия;
- заражения.
У многих видов без нее не обходится прикрепление микроорганизма к питательной среде.
Клеточный цикл
Согласно научным источникам, в клеточный цикл входят все периоды развития клетки от момента деления материнской и образования дочерней до гибели (или деления). Клеточный цикл кратко можно охарактеризовать несколькими точными параметрами.
Длительность
Существуют как быстро делящиеся — 12-36 ч (например, кроветворные), так и медленно воспроизводящиеся. Средний цикл, свойственный многим организмам — от 10 до 25 часов.
Фазы клеточного цикла
Жизнь клеточного организма можно разделить на несколько фаз.
Фазы:
- Интерфаза, или клеточный рост. В этот период происходит быстрая наработка веществ (ДНК, белков и т. д.) и подготовка к делению. Интерфазу можно условно разделить на подпериоды. Это G1-фаза (начальный рост), S-фаза (репликация ДНК) и G2-фаза (непосредственно подготовка к митозу).
- Фаза митоза, или фаза М. Это время жизни также можно разделить на две стадии – кариокинез (деление ядра) и цитокинез (деление цитоплазмы).
Клеточный цикл — высокоорганизованная система.
Регуляция клеточного цикла
Все периоды клеточного цикла регулируются особыми белками — циклин-зависимыми киназами и циклинами. Содержание этих белков варьируется на разных стадиях жизненного цикла. После митотического деления они полностью разрушаются.
Что такое клеточная мембрана
Если провести аналогию с куриным яйцом (разбив скорлупу, аккуратно отделить от нее тонкую полупрозрачную пленочку), то визуально можно представить, что скорлупа — это плотная клеточная оболочка, а пленка — мембрана. Эта картинка очень наглядно позволяет увидеть, каким образом под клеточной стенкой, состоящей из целлюлозы, располагается плазмалемма. Конечно, это представление будет условным, но, действительно, мембрана в переводе с латинского языка означает «кожа». Хотя этот термин достаточно давний, он точно передает сущность мембранной структуры .
Цитолемма (еще одно ее название) животной клетки плотной оболочкой не защищена, однако имеет особый слой, состоящий из белков и жиров, соединенных с сахарами (гликопротеинов и гликолипидов). Называют его гликокаликс, и роль, которую он несет (рецепторная, сигнальная), очень важна для жизнедеятельности.
Строение
Строение структуры уникально, и именно за счет него функции клеточной мембраны выполняются точно и избирательно.
В структуру плазмалеммы входят молекулы:
- фосфолипидов;
- гликолипидов;
- холестерола;
- белков.
Однако не только такой щедрый химический состав делает цитоплазматическую мембрану особой структурой, все свои функции она выполняет благодаря строгой организации молекул.
Строение плазмалеммы физиологически идеально — двойной слой молекул жиров (липидов), полярно организованных, не дают «своим» выходить за пределы клетки, а «чужим» — проникать внутрь.
Организация плазмалеммы:
- мембрана состоит из липидов молекулы, которые имеют особое строение;
- каждый липид имеет два конца — гидрофильная («любящая» воду) головка и гидрофобный («боящийся» воды) хвост;
- липиды выстроены таким образом, чтобы головки были снаружи, а гидрофобные хвосты внутри;
- поверхность мембраны гидрофильна (пропускает воду и, соответственно, растворы), а вот внутренняя часть, состоящая из гидрофобных окончаний, воду отталкивает;
- в основном молекулы липидов содержат остатки фосфорной кислоты (это фосфолипиды), некоторые связаны с углеводами (гликолипиды) и холестеролом;
- холестерол придает мембране упругость и жесткость;
- благодаря электростатическим свойствам липиды притягивают молекулы белков, которые также входят в структуру цитолеммы.
Именно белковые молекулы (гранулы) заслуживают отдельного внимания ученых. Из-за своего различного положения и ориентации в полужидкой липидной среде они выполняют самые различные и очень важные функции.
Внутри и на поверхности цитолеммы встречаются следующие виды белков:
- Периферические. Эти молекулы расположены на поверхности и в основном выполняют защитную и стабилизирующую функции. Так, они выстраивают ферменты в конвейерные цепи и не позволяют ферментам просто перемещаться вдоль бислоя.
- Погруженные внутрь (полуинтегральные). Основная их функция — ферментативная, также они могут участвовать в транспорте веществ. Изучена и еще одна интересная роль этих белков — как переносчиков. Они легко соединяются с транспортируемыми молекулами и проводят их внутрь клетки.
- Пронизывающие (интегральные). Они располагаются таким образом, что проходят насквозь, через билипидный слой. Если несколько таких белков сливаются, то образуется канал (пора), через которую могут проходить определенные вещества, связываясь с белковыми молекулами.
Таким образом, все элементы мембранного бислоя несут строго ограниченные своей ролью и строением функции. Благодаря такой организации система работает слаженно и точно.
Отмечено, что плазмалеммы даже внутри одной клетки неоднородны. В них различается не только соотношение химических составных (белков, липидов, углеводов), но и вязкость внутреннего содержимого, ферментативная активность, плотность наружного слоя, толщина.
Месторасположение в клетке
Мембранные структуры буквально пронизывают клеточное содержимое. Они ограничивают все органоиды (за редким исключением, например рибосомы), выстилают их изнутри, являются оболочками ядер.
Самая массивная по содержанию плазмалеммы структура — эндоплазматическая сеть (ЭПР). Если сложить все мембраны, ее составляющие, то получится площадь более половины общей — на все клеточное пространство. По морфологии оболочка ЭПР сходна с внешней ядерной. Они составляют с ней единую систему и обеспечивают активный взаимный перенос элементов.
Комплекс Гольджи — еще один органоид, полностью выполненный из мембранных мешочков (цистерн). Также цитолеммы имеют митохондрии и пластиды.
Плазматическая мембрана — это часть плазмалеммы, находящаяся на границе клеточного содержимого. Она ограничивает протопласт от внешней среды, окружает клетку, защищая его от наружного воздействия.
Строение
Независимо от того, что ЦПМ (цитоплазматическая мембрана) в любой бактериальной клетке выполняет одни и те же функции, ее строение все же может иметь ряд отличий, в зависимости от группы прокариотов, которые исследуются в каждом конкретном случае.
Структурные отличия имеются между строением плазматической мембраны грамотрицательных бактерий и грамположительных.
Здесь есть необходимость уточнить, что иногда вносится путаница в определение цитоплазматической мембраны и клеточной стенки бактерии.
Именно эти структуры, в случае выявления грамотрицательных микроорганизмов, не реагируют на окраску по Граму, что позволяет провести первоначальную идентификацию бактерий.
Поэтому, говоря о грамотрицательных прокариотах, нужно понимать, что в данном случае исследуется не ЦПМ, а клеточная стенка, хотя эти клеточные структуры и находятся друг с другом в непосредственной близости.
Второе важное отличие строения ЦПМ грамотрицательных бактерий – наличие наружной мембраны. Если взять за основу исследование мембранных конструкций у грамположительных прокариотов, то мембрана у этих бактерий состоит из:
Если взять за основу исследование мембранных конструкций у грамположительных прокариотов, то мембрана у этих бактерий состоит из:
- Двух слоев липидов. Липиды – органические жироподобные вещества, которые характеризуются разной степенью водонепроницаемости (гидрофобностью).
- В эти два липидных слоя в буквальном смысле вмонтированы белковые молекулы, которые и отвечают за сообщение между внутренним и наружным пространством бактериальной клетки.
Если у грамположительных бактерий есть только одна ЦПМ, то у грамотрицательных прокариот их две.
Внешний слой такой клетки состоит из:
- самой ЦПМ, которая соприкасается с цитоплазмой;
- клеточной стенки, которая состоит из муреина;
- наружной мембраны, которая имеет такую же бисистему липидов с белковыми комплексами.
Сообщение грамотрицательных бактериальных клеток с внешним миром через такую трехступенчатую структуру не дает преимущества этим микроорганизмам на выживание в более суровых условиях. Эти микробы также плохо переносят высокие температуры, среду с повышенной кислотностью и перепадами внешнего давления.
Хотя, безусловно, и среди грамположительных, и среди грамотрицательных прокариотов есть термофильные и барофильные группы бактерий, которые приспособились к выживанию в экстремальных условиях.
Отдельным образованием ЦПМ является мезосома. Это своеобразное впячивание части самой мембраны внутрь клеточного пространства. Мезосомы играют определяющую роль при делении клетки бактерии.
Что представляет собой оболочка?
Бактериальная оболочка состоит из липополисахаридов, протеинов, липопротеидов, тейхоевых кислот. Основополагающим компонентом является муреин (пептидогликан).
Толщина клеточной стенки может быть различной и достигать 80 нм. Поверхность – не сплошная, имеет поры различного диаметра, через которые микроб получает питательные вещества и выделяет продукты своей жизнедеятельности.
О значимости наружной стенки свидетельствует её значительный вес – он может колебаться от 10 до 50% сухой массы всей бактерии. Цитоплазма может выпячиваться, меняя внешний рельеф бактерии.
Сверху оболочка может быть покрыта ресничками либо на ней могут располагаться жгутики, которые состоят из флагеллина – специфического вещества белковой природы. Для крепления к бактериальной оболочке у жгутиков есть особые структуры – плоские диски. Бактерии с одним жгутиком называются монотрихами, с двумя – амфитрихами, с пучком – лофотрихами, с множеством пучков – перитрихами. Не имеющие жгутиков микроорганизмы называются атрихиями.
Процесс синтеза стенок микроорганизмов начинается внутри бактерии. Для этого в ней имеется сеть полисахаридных комплексов, которые чередуются в определенной последовательности (ацетилглюкозамин и ацетилмурамовая кислота) и связываются между собой прочными пептидными связями. Сборка стенки осуществляется снаружи, на плазматической мембране, где оболочка и располагается.
Поскольку бактерия не имеет ядра, то и ядерной оболочки у нее не имеется.
Оболочка представляет собой неокрашенную тонкую структуру, которую без специальной окраски клеток даже невозможно рассмотреть. Для этого используют плазмолиз и затемненное поле зрения.
Окрашивание по Граму
Для изучения подробной структуры клетки в 1884 году Христиан Грам предложил особый способ её окраски, который в последующем был назван его именем. Окраска по Граму делит все микроорганизмы на грамположительные и грамотрицательные. Для каждого вида характерны свои биохимические и биологические свойства. Различная окраска обусловлена и строением клеточной стенки:
- Грамположительные бактерии имеют массивную оболочку, которая включает полисахариды, белки и липиды. Она прочная, поры имеют минимальную величину, краска, применяемая для окрашивания, плотно проникает вглубь и практически не вымывается. Такие микроорганизмы приобретают сине-фиолетовый цвет.
- Грамотрицательные бактериальные клетки имеют определенные отличия: толщина их стенки меньше, зато оболочка имеет два слоя. Внутренний слой состоит из пептидогликана, который имеет более рыхлую структуру и широкие поры. Краска при окрашивании по Граму легко вымывается этанолом. Клетка при этом обесцвечивается. В дальнейшем методикой предусмотрено добавление контрастного красного красителя, который окрашивает бактерии в красный или розовый цвет.
Удельный вес грамположительных микробов, безвредных для человека, гораздо превышает грамотрицательные. На сегодняшний день классифицировано три группы грамотрицательных микроорганизмов, которые вызывают у человека заболевания:
- кокки (стрептококки и стафилококки);
- неспорообразующие формы (коринебактерии и листерии);
- спорообразующие формы (бациллы, клостридии).
Функции
- Барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
- Транспортная — через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке оптимального pH и концентрации ионов, которые нужны для работы клеточных ферментов.Частицы, по какой-либо причине неспособные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортёры) и белки-каналы или путём эндоцитоза.При пассивном транспорте вещества пересекают липидный бислой без затрат энергии по градиенту концентрации (градиент концентрации указывает направление увеличения концентрации) путём диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивает в клетку ионы калия (K+) и выкачивает из неё ионы натрия (Na+).
- Матричная — обеспечивает определённое взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие.
- Механическая — обеспечивает автономность клетки, её внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечении механической функции имеют клеточные стенки, а у животных — межклеточное вещество.
Ультраструктура хлоропласта: 1. наружная мембрана 2. межмембранное пространство 3. внутренняя мембрана (1+2+3: оболочка) 4. строма (жидкость) 5. тилакоид с просветом (люменом) внутри 6. мембрана тилакоида 7. грана (стопка тилакоидов) 8. тилакоид (ламела) 9. зерно крахмала 10. рибосома 11. пластидная ДНК 12. пластоглобула (капля жира)
Энергетическая — при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки.
Рецепторная — некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.
Ферментативная — мембранные белки нередко являются ферментами
Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
Осуществление генерации и проведения биопотенциалов.С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.
Маркировка клетки — на мембране есть антигены, действующие как маркеры — «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединёнными к ним разветвлёнными олигосахаридными боковыми цепями), играющие роль «антенн»
Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.
Мезосомы
Мезосомы
представляют собой мембранные структуры,
образуемые при закручивании ЦПМ.
Морфологически мезосомы выглядят как
ламеллярные стопки или спирально
упакованные ламеллы, везикулярные или
тубулярные структуры, а также смешанные
мембранные системы, образованные
трубочками, пузырьками и ламеллами
(рис. 7). По расположению в клетке различают:
мезосомы, образующиеся в зоне клеточного
деления и формирования клеточной
перегородки (септальные мезосомы) и
мезосомы, сформированные в результате
инвагинации периферических участков
ЦПМ (латеральные мезосомы).
Рис.
7. Типы строения истинных мезосом. а —
ламеллярный; б — г — тубулярные типы
(Бирюзова, Поглазова, 1977).
Предполагается,
что мезосомы полифункциональны, содержат
различные ферментные системы и играют
определенную роль в энергетическом
метаболизме. Считают, что они являются
сайтом для формирования клеточной
стенки бактерий и прикрепления нуклеоида
в процессе репликации ДНК. Септальные
мезосомы участвуют в построении
поперечной перегородки при делении
бактерий.
Строение
Цитоплазма является внутренней средой любой клетки и характерна для клеток бактерий, растений, грибов, животных.Цитоплазма состоит из следующих компонентов:
- гиалоплазмы (цитозоли) – жидкого вещества;
- клеточных включений – необязательных компонентов клетки;
- органоидов – постоянных компонентов клетки;
- цитоскелета – клеточного каркаса.
Химический состав цитозоли включает следующие вещества:
- воду – 85 %;
- белки – 10 %
- органические соединения – 5 %.
К органическим соединениям относятся:
- минеральные соли;
- углеводы;
- липиды;
- азотсодержащие соединения;
- незначительное количество ДНК и РНК;
- гликоген (характерен для животных клеток).
Рис. 1. Состав цитоплазмы.
Цитоплазма содержит запас питательных веществ (капли жира, зёрна полисахаридов), а также нерастворимые отходы жизнедеятельности клетки.
Цитоплазма бесцветна и постоянно движется, перетекает. Она содержит все органеллы клетки и осуществляет их взаимосвязь. При частичном удалении цитоплазма восстанавливается. При полном удалении цитоплазмы клетка погибает.
Строение цитоплазмы неоднородно. Условно выделяют два слоя цитоплазмы:
- эктоплазму (плазмагель) – наружный плотный слой, не содержащий органелл;
- эндоплазму (плазмазоль) – внутренний более жидкий слой, содержащий органеллы.
Разделение на эктоплазму и эндоплазму ярко выражено у простейших. Эктоплазма помогает клетке передвигаться.
Снаружи цитоплазма окружена цитоплазматической мембраной или плазмалеммой. Она защищает клетку от повреждений, осуществляет выборочный транспорт веществ и обеспечивает раздражимость клетки. Мембрана состоит из липидов и белков.
Границы клеточного содержимого
Цитоплазма клетки прокариотов имеет 2 слоя ограничения:
- цитоплазматическую мембрану (ЦПМ);
- клеточную стенку.
Ограничивающие цитоплазму у бактерий слои имеют различные функции и свойства.
Клеточная стенка бактерии
Наружный укрывной слой прокариотов, клеточная стенка, представляет собой плотную оболочку и выполняет ряд функций:
- защита от внешнего воздействия;
- придание микроорганизму характерной формы.
Фактически клеточная стенка микроорганизмов является своеобразным наружным скелетом. Такое строение оправданно – ведь внутриклеточное осмотическое давление может в десятки раз превышать давление наружное, и без защиты плотной клеточной стенки бактерию просто разорвет.
Клеточная стенка бактерий, ограничивающая содержимое клетки, имеет толщину от 0,01 до 0,04 мкм, причем толщина стенки увеличивается в процессе жизни микроорганизма. Несмотря на плотность клеточной оболочки, она проницаема. Вовнутрь беспрепятственно проходят питательные вещества, а продукты жизнедеятельности выводятся из нее.
Цитоплазматическая мембрана
Между цитоплазмой и клеточной стенкой располагается ЦПМ – цитоплазматическая мембрана. В бактериальной клетке она выполняет целый ряд функций:
- регулирует поступление питательных веществ и вывод продуктов жизнедеятельности;
- синтезирует соединения для клеточной стенки;
- контролирует активность ряда ферментов, расположенных на ней.
Мембрана цитоплазмы настолько прочна, что бактериальная клетка может какое-то время существовать даже без клеточной стенки.
Строение
Независимо от того, что ЦПМ (цитоплазматическая мембрана) в любой бактериальной клетке выполняет одни и те же функции, ее строение все же может иметь ряд отличий, в зависимости от группы прокариотов, которые исследуются в каждом конкретном случае.
Структурные отличия имеются между строением плазматической мембраны грамотрицательных бактерий и грамположительных.
Здесь есть необходимость уточнить, что иногда вносится путаница в определение цитоплазматической мембраны и клеточной стенки бактерии.
Именно эти структуры, в случае выявления грамотрицательных микроорганизмов, не реагируют на окраску по Граму, что позволяет провести первоначальную идентификацию бактерий.
Поэтому, говоря о грамотрицательных прокариотах, нужно понимать, что в данном случае исследуется не ЦПМ, а клеточная стенка, хотя эти клеточные структуры и находятся друг с другом в непосредственной близости.
Второе важное отличие строения ЦПМ грамотрицательных бактерий – наличие наружной мембраны. Если взять за основу исследование мембранных конструкций у грамположительных прокариотов, то мембрана у этих бактерий состоит из:. Если взять за основу исследование мембранных конструкций у грамположительных прокариотов, то мембрана у этих бактерий состоит из:
Если взять за основу исследование мембранных конструкций у грамположительных прокариотов, то мембрана у этих бактерий состоит из:
- Двух слоев липидов. Липиды – органические жироподобные вещества, которые характеризуются разной степенью водонепроницаемости (гидрофобностью).
- В эти два липидных слоя в буквальном смысле вмонтированы белковые молекулы, которые и отвечают за сообщение между внутренним и наружным пространством бактериальной клетки.
Если у грамположительных бактерий есть только одна ЦПМ, то у грамотрицательных прокариот их две.
Внешний слой такой клетки состоит из:
- самой ЦПМ, которая соприкасается с цитоплазмой;
- клеточной стенки, которая состоит из муреина;
- наружной мембраны, которая имеет такую же бисистему липидов с белковыми комплексами.
Сообщение грамотрицательных бактериальных клеток с внешним миром через такую трехступенчатую структуру не дает преимущества этим микроорганизмам на выживание в более суровых условиях. Эти микробы также плохо переносят высокие температуры, среду с повышенной кислотностью и перепадами внешнего давления.
Хотя, безусловно, и среди грамположительных, и среди грамотрицательных прокариотов есть термофильные и барофильные группы бактерий, которые приспособились к выживанию в экстремальных условиях.
Отдельным образованием ЦПМ является мезосома. Это своеобразное впячивание части самой мембраны внутрь клеточного пространства. Мезосомы играют определяющую роль при делении клетки бактерии.