Какие вещества относятся к моносахаридам? классификация и представители

Самые полезные несладкие фрукты

Все фрукты с низким содержанием сахара уже полезны для организма. Но следует учитывать, что только при условии их умеренного употребления. Какие фрукты относятся к несладким и в чем их польза? Так, например, лимон является рекордсменом по содержанию витамина C, который так необходим иммунной системе организма особенно в период роста числа вирусных заболеваний. Но есть и противопоказания к его применению: язва желудка, гастрит, гипертония.

Не менее полезным является авокадо. Регулярное употребление этих плодов (по половинке в день) улучшает память, помогает нормализовать работу кишечника, избавиться от запоров, снижает давление.

По содержанию сахара авокадо заслуженно возглавляет списокнесладких фруктов. Но злоупотреблять им не стоит, поскольку плоды очень калорийные, за счет большего количества в них растительного жира.

Таким образом, полезными являются абсолютно все несладкие фрукты. Их рекомендуется употреблять в пищу до или после еды, а лучше использовать в качестве перекуса. Разовая доза плодов составляет 100-150 грамм или 2-3 фрукта.

Диета с низким гликемическим индексом

Многие факторы способны изменять гликемический индекс продукта, что необходимо учитывать при составлении диеты с низким ГИ.

Вот некоторые из них:

  • длительность хранения и степень зрелости крахмалосодержащих продуктов. К примеру, недозрелый банан имеет низкий ГИ, равный 40, а после его дозревания и размягчении, ГИ повышается до 65. Яблоки при дозревании также увеличивают ГИ, но не так быстро;
  • уменьшение частиц крахмала приводит к увеличению ГИ. Это относится ко всем зерновым продуктам. Вот почему таким полезным считается зерновой хлеб или мука крупного помола. В крупных частицах муки остаются пищевые волокна, протеины, клетчатка, которая понижает ГИ до 35-40. Поэтому предпочтение нужно отдавать хлебу и муке грубого помола;
  • разогревание продуктов после хранения в холодильнике уменьшает ГИ;
  • кулинарная обработка повышает ГИ. Так, к примеру, вареная морковь имеет ГИ 50, в то время как в сыром виде он не превышает 20, так как содержащийся в ней крахмал при нагревании желатинируется;
  • продукты промышленного производства готовят, прибегая к термической обработке, желатинируя крахмалосодержащие продукты. Вот почему кукурузные хлопья, картофельное пюре для быстрого приготовления, каши для готовых завтраков имеют очень высокий ГИ – 85 и 95 соответственно. Кроме того, они содержат декстрины и модифицированный крахмал – ГИ 100;
  • многие продукты содержат в своем составе «кукурузный крахмал». Увидя такую надпись, каждый должен понимать, что ГИ этого продукта близок к 100, что способно повысить гликемию;
  • разрыв зерен кукурузы при приготовлении попкорна приводит к увеличению ГИ на 15-20%;
  • некоторые виды лапши и спагетти, полученные способом пастификации или экструзии под высоким давлением, имеют пониженный ГИ -40. Но тесто для пельменей, вареников, домашней лапши, приготовленное из муки твердых сортов обычным способом, имеет высокий ГИ -70;
  • Спагетти и макароны из твердых сортов рекомендовано слегка недоваривать, так, чтобы они слегка похрустывали на зубах. Это максимально снизит ГИ. Если же варить макароны в течение 15-20 минут, то желатинирование крахмала усилится и ГИ повысится до 70. Если варить спагетти (даже из белой муки) способом аль денте (слегка недоваренными) и подавать в холодном виде, например, в салате, то их ГИ составит всего 35;
  • Уменьшению ГИ способствует и длительное хранение продуктов, содержащих крахмал. Теплый, только что выпеченный хлеб будет иметь гораздо больший ГИ, чем тот, который остыл и тем более тот, который подсох. Поэтому хлеб рекомендуют хранить в холодильнике или даже замораживать вначале с последующей разморозкой. А есть его в подсушенном, зачерствевшем виде. Для быстрого подсушивания можно готовить сухарики в духовке или в тостере;
  • Охлаждение продуктов, например, тех, которые продаются в вакуумной оболочке и хранятся при температуре не выше 5 градусов, также понижает ГИ;

Углеводы

Углеводы (сахара) — органические вещества, имеющие сходное строение и свойства, состав большинства которых отражает формула Cx(H2O)y,

где x, y ≥ 3.

Общеизвестные представители: глюкоза (виноградный сахар) С6Н12О6, сахароза (тростниковый, свекловичный сахар) С12Н22О11, мальтоза (солодовый сахар) С12Н22О11, лактоза (молочный сахар) С12H22O11, крахмал и целлюлоза (С6Н10О5)n.

Учебный фильм «Углеводы»

Известны также соединения, относящиеся к углеводам, состав которых не соответствует общей формуле, например, сахар рамноза С6Н12О5

В то же время есть вещества, соответствующее общей формуле углеводов, но не проявляющие их свойства (например, природный шестиатомный спирт инозит С6Н12О6).

Углеводы объединяют разнообразные соединения – от низкомолекулярных, состоящих из некоторых атомов (х=3), до полимеров [СxН2Оy]n с молекулярной массой в несколько миллионов (n=10000).

Биологическая роль углеводов

Углеводы содержатся в клетках растительных и животных организмов и по массе составляют основную часть органического вещества на Земле. Эти соединения образуются растениями в процессе фотосинтеза из углекислого газа и воды и при участии хлорофилла.

Животные организмы не способны синтезировать углеводы и получают их с растительной пищей. Углеводы составляют значительную долю пищи млекопитающих.

Фотосинтез можно рассматривать как процесс восстановления СО2 с использованием солнечной энергии:

В процессе дыхания происходит окисление углеводов, в результате чего выделяется энергия, необходимая для функционирования живых организмов:

Видеофильм «Механизм фотосинтеза»

Содержание углеводов в растениях составляет до 80% массы сухого вещества, в организмах человека и животных – до 20%. Они играют важную роль в физиологических процессах. Пища человека состоит примерно на 70% из углеводов.

Функции углеводов в живых организмах разнообразны.

Они служат источником запасной энергии (в растениях – крахмал, в животных организмах – гликоген). В растительных организмах углеводы являются основой клеточных мембран. В качестве одного из структурных компонентов остатки углеводов входят в состав нуклеиновых кислот.

Классификация углеводов

Все углеводы по числу входящих в их молекулы структурных единиц (остатков простейших углеводов) и способности к гидролизу можно разделить на две группы: простые углеводы, или моносахариды, и сложные углеводы (олигосахариды и полисахариды).

Простые углеводы (моносахариды) – это простейшие углеводы, не гидролизующиеся с образованием более простых углеводов.

Сложные углеводы (олигосахариды и полисахариды) – это углеводы, молекулы которых состоят из двух или большего числа остатков моносахаридов и разлагаются на эти моносахариды при гидролизе.

Моносахариды по числу атомов углерода подразделяют на тетрозы (С4Н8О4), пентозы (С5Н10О5),  и гексозы (С6Н12О6). Важнейшие пентозы —  ри­бо­за и дез­ок­си­ри­бо­за, гексозы – глюкоза и фруктоза.

Олигосахариды (продукты конденсации двух или нескольких молекул моносахаридов). Среди олигосахаридов наибольшее значение имеют дисахариды (диозы) – продукты конденсации двух молекул моносахаридов (например, сахароза — С12Н22О11, при гид­ро­ли­зе пре­вра­ща­ет­ся в смесь глю­ко­зы и фрук­то­зы).

Полисахариды (крахмал, целлюлоза) образованы большим числом молекул моносахаридов.

Олиго- и полисахариды расщепляются при гидролизе до моносахаридов. В молекулах олигосахаридов содержится от 2 до 10 моносахаридных остатков, в полисахаридах — от 10 до 3000—5000.

Раффиноза – содержится в сахарной свекле.

Гликоген – животный крахмал.

Номенклатура углеводов

Для большинства углеводов приняты тривиальные названия с суффиксом –оза (глюкоза, рибоза, сахароза, целлюлоза и т.п.).

Рубрики: Углеводы Теги: Углеводы

Классификация моносахаридов по генетическому ряду (D, L)

Все моносахариды содержат асимметричные атомы – атомы углерода, связанные с четырьмя разными заместителями. В структурных формулах такие атомы обычно отмечают звездочкой. Наличие асимметрических атомов в веществе обуславливает пространственную изомерию, то есть разное расположение в пространстве групп –ОН и –Н относительно углеродной цепи.

Например, простейший представитель моноз глицериновый альдегид имеет один асимметрический атом углерода и может находиться в виде двух пространственных изомеров. У одного из них группа –ОН расположена справа от углеродной цепи и его навали D-глицериновый альдегид (от лат. dexter – правый). У другого группа –ОН расположена слева и его называют L-глицериновым альдегидом (от лат. leaves — левый).

Все пространственные изомеры моносахаридов также делят на D- и L. Для определения, к какому генетическому ряду относится моносахарид, его пространственное строение сравнивают со строением глицеринового альдегида. Значение имеет конфигурация последнего, считая от альдегидной группы, асимметрического атома углерода.

Если группы –ОН и –Н расположены здесь так же, как у D-глицеринового альдегида, этот моносахарид относят к D-генетическому ряду, если они расположены, как у L-глицеральдегида — то к L-ряду. Подавляющее большинство встречающихся в природе сахаридов относится к D-генетическому ряду.

Количество пространственных изомеров считают по формуле Фишера: N=2n, где n — количество асимметрических атомов углерода.

Чем опасен переизбыток и недостаток углеводов

При злоупотреблении углеводной пищей резко повышается сывороточный уровень глюкозы в крови, увеличивается выработка инсулина и начинается процесс преобразования сахара в гликоген. Поэтому причиной ожирения, сахарного диабета и других заболеваний, связанных с нарушениями углеводного обмена, является употребление большого количества продуктов с высоким содержанием быстрых углеводов. Сложные химические структуры не наносят вреда здоровому организму.

В то же время дефицита углеводов в организме также не следует допускать. При недостаточном потреблении сахаридов происходит постепенное истощение жировой прослойки. Гликоген начинает скапливаться в печени в качестве последнего резерва для критической ситуации, что приводит к жировому перерождению органа и снижению его функциональной активности.

Важно помнить, что углеводы – это главный источник получения энергии, поэтому при дефиците нутриентов начинается слабость, снижается физическая и умственная работоспособность. Если полностью исключить из рациона углеводную пищу, внутренние жировые запасы подвергаются расщеплению

Это становится причиной усиленного синтеза токсичных катенов, приводящих к развитию окислительных реакций и кетоацидотической коме.

При появлении признаков перенасыщения углеводами или симптомов их дефицита следует заново корректировать рацион и проконсультироваться у лечащего врача, чтобы оценить состояние внутренних органов. Медицинское обследование позволит избежать негативных последствий в виде ожирения, хронической усталости, депрессии и сахарного диабета 2 типа.

Вред употребления в большом количестве продуктов, содержащих углеводы

Люди, желающие избавиться от лишнего веса, спрашивают, в каких продуктах много углеводов. При потреблении большого количества пищи с высоким содержанием сахара плазменная концентрация глюкозы в крови увеличивается, что создает дополнительную нагрузку на поджелудочную железу. В результате в крови падает уровень минеральных солей и витаминов Дефицит питательных веществ нарушает работу внутренних органов.

Изделия из дрожжевого теста угнетают естественную микрофлору кишечника, повышая риск развития дисбактериоза. Поэтому во время диеты следует есть ржаной пресный хлеб.

Список продуктов с большим содержанием углеводов. Таблица

Продукты с высоким содержанием углеводов представлены кондитерскими и мучными изделиями. В них содержатся быстрые сахариды, поэтому без необходимости не следует злоупотреблять такой пищей.

Продукт Количество углеводов на 100 г продукта, %
Сахарный песок 99
Леденцы 96
Пчелиный мед, пастила, мука из рисовых зерен, зефир, мармелад 80
Пряники, сдобное печенье 75
Клубничное натуральное варенье, белый рис 74
Кукурузная мука 72
Сушки, кукурузные хлопья, гречневая и манная крупа 71
Макароны, малиновое варенье, пшеничная мука, финики 70
Цельнозерновая пшеница 68
Перловка, сливочные сухари, шлифованное пшено 67
Просеянная ржаная мука, овсяные отруби 66
Изюм, ячневые хлопья, овсяная мука 65
Бисквиты с белковым кремом 63
Сухофрукты из груши, вафли 62
Овсяные хлопья 61
Овес, пшеница, шоколадные конфеты, высушенные яблоки 60
Сухофрукты: инжир, персик, чернослив 58
Гречка, обезжиренное сгущенное молоко без сахара 57
Ячмень, гречиха, рожь 56
Цельнозерновой овес 55
Халва 54
Жареные желуди 53
Сухое молоко 52
Курага, белый хлеб 51
Молочный шоколад 50

Список продуктов, не содержащих углеводы

К продуктам, не содержащим углеводы, относятся белковая пища животного происхождения, приправы, сахарозаменители и некоторые напитки.

Виды пищи Продукты
Мясные изделия и животные белки без пищевых добавок телятина, говядина;

мясо свиньи;

баранина;

говяжий язык;

куриное и рыбное филе;

утка;

морепродукты;

сало;

рыбий жир;

кролик

Молочные продукты Сливочное масло
Соусы и специи соль;

растительные масла: авокадовое, оливковое, подсолнечное, рапсовое;

уксус

Заменители сахара сукралоза;

фруктоза;

стевия;

аспартам;

сахарин

Жидкости чай;

натуральный кофе;

минеральная вода

Классификация простых углеводов

В современной науке применяют разные классификации для определения типов моносахаридов.

Но для начала важно сказать, что существует две формы этих веществ:

  • открытая (оксоформа);
  • циклическая.

Моносахариды открытой формы – это вещества, молекула которых состоит из карбонильной и нескольких гидроксильных групп. Это значит, что они могут быть альдегидоспиртами и кетоноспиртами. Отсюда и названия групп – альдозы и кетозы.

Моносахариды циклической формы могут создавать так называемые циклы, замыкаясь в кольца. Этот вид вещества более устойчив, поэтому и в природе они представлены в большем количестве.

Кроме того, моносахариды различают по длине углеродной цепи (количеству атомов углерода). Отсюда и систематизация веществ на триозы, тетрозы, пентозы, гексозы и так далее.

Углеводы химия. Классификация углеводов

Углеводы — органические вещества, молекулы которых состоят из атомов углерода, водорода и кислорода. Причем, водород и кислород в них стоит в тех соотношениях, что и в молекулах воды (1:2)Общая формула углеводов Cn(H2O)m, т. е. они как бы состоят из углерода и воды, отсюда и название класса, которое имеет исторические корни. Оно появилось на основе анализа первых известных углеводородов. В дальнейшем было установлено, что имеются углеводы, в молекулах которых нет соотношения 1H : 2O, например, дезоксирибоза — C5H10O4 . Известны так же органические соединения, состав которых подходит к приведенной общей формуле, но которые не принадлежат к классу углеводов.  К ним относятся, например формальдегид CH2O   и уксусная кислота CH3COOH.Однако, название «углеводороды» укоренилось и является общепризнанным для этих веществ.Углеводороды по их способности гидролизоваться можно разделить на три основные группы: моно-, ди- и полисахариды.

Моносахариды —  углеводы, которые не гидролизуются (не разлагаются водой). В свою очередь, в зависимости от числа атомов углерода. Моносахариды подразделяются на триозы (молекулы которых содержат три атома углерода), тетрозы (четыре атома),  пентозы (пять), гексозы (шесть) и т. д.В природе моносахариды предоставлены преимущественно пентозами и гексозами . К пентозам относятся, например, рибоза C5H10O5  и дезоксирибоза (рибоза, у которой «отняли» атом кислорода) C5H10O4.  Они входят в состав РНК и ДНК и определяют первую часть названий нуклеиновых кислот.К гексозам, имеющим общую молекулярную формулу  C6H12O6, относятся, например, глюкоза, фруктоза, галактоза.

Общие характеристики

Моносахариды — самые простые углеводы. Конструктивно они являются углеводами, и многие из них могут быть представлены эмпирической формулой (C-H2O)N. Они представляют собой важный источник энергии для клеток и являются частью различных молекул, необходимых для жизни, таких как ДНК.

Моносахариды состоят из атомов углерода, кислорода и водорода. Когда они находятся в растворе, преобладающая форма сахаров (таких как рибоза, глюкоза или фруктоза) не является открытой цепью, но они образуют энергетически более стабильные кольца.

Самые маленькие моносахариды состоят из трех атомов углерода и представляют собой дигидроксиацетон и d- и l-глицеральдегид..

Углеродный скелет моносахаридов не имеет разветвления, и все атомы углерода, кроме одного, обладают гидроксильной группой (-ОН). На оставшемся атоме углерода находится карбонильный кислород, который можно объединить в ацетальную или кетальную связь.

Дисахариды и полисахариды

Так же, как и моносахариды, широкое распространение в природе имеют и дисахариды — всем известная сахароза (тростниковый или свекловичный сахар), лактоза (молочный сахар), мальтоза (солодовый сахар). Сам термин «дисахарид» сообщает нам о двух остатках моносахаридов, связанных между собой в молекулах этих органических соединений, получение которых возможно путем гидролиза (разложением водой) молекулы дисахарида.

Дисахариды — углеводы, молекулы которых состоят из двух остатков моносахаридов, которые соединены друг с другом за счет взаимодействия двух гидроксильных групп. В процессе образования молекулы дисахарида происходит отщепление одной молекулы воды:

или для сахарозы:

Поэтому молекулярная формула дисахаридов С12H22O11. Образование сахарозы происходит в клетках растений под воздействием ферментов. Но химики нашли способ осуществления многих реакций, являющихся частью процессов, которые происходят в живой природе. В 1953 году французский химик Р.

Лемье впервые осуществил синтез сахарозы, названный современниками «покорением Эвереста органической химии». В промышленности сахароза получается из сока сахарного тростника (содержание 14-16%), сахарной свеклы (16-21%), а также некоторых других растений, таких как канадский клен или земляная груша.

Всем известно, что сахароза представляет из себя кристаллическое вещество, которое имеет сладкий вкус и хорошо растворимо в воде. Сок сахарного тростника содержит углевод сахароза, привычно называемый нами сахаром. Имя немецкого химика и металлурга А. Маргграфа тесно связано с производством сахара из свеклы.

Он был одним из первых исследователей, применивших в своих химических исследованиях микроскоп, при помощи которого им были обнаружены кристаллы сахара в свекольном соке в 1747 году. Лактоза — кристаллический молочный сахар, была получена из молока млекопитающих еще в XVII в. Лактоза является менее сладким дисахаридом, нежели сахароза.

Теперь ознакомимся с углеводами, имеющими более сложное строение — полисахаридами. Полисахариды — высокомолекулярные углеводы, молекулы которых состоят из множества моносахаридов. В упрощенном виде общая схема может быть представлена так:

Теперь сравним строение и свойства крахмала и целлюлозы — важнейших представителей полисахаридов. Структурное звено полимерных цепей этих полисахаридов, формула которых (С6H10O5)n, — это остатки глюкозы. Для того, чтобы записать состав структурного звена (С6H10O5), нужно отнять молекулу воды из формулы глюкозы.

Целлюлоза и крахмал имеют растительное происхождение. Они образуются из молекул глюкозы в результате поликонденсации. Уравнение реакции поликонденсации, а также обратного ей процесса гидролиза для полисахаридов условно можно записать следующим образом:

Молекулы крахмала могут иметь как линейный, так и разветвленный тип строения, молекулы целлюлозы — только линейный. При взаимодействии с йодом крахмал, в отличие от целлюлозы, дает синее окрашивание. Различные функции эти полисахариды имеют и в растительной клетке. Крахмал служит запасным питательным веществом, целлюлоза выполняет структурную, строительную функцию. Стенки растительных клеток построены из целлюлозы.

См. также

   Словари и энциклопедии
Нормативный контроль NDL:
Мультисахариды
Дисахариды
  • Сахароза
  • Лактоза
  • Мальтоза
  • Нигероза
  • Трегалоза
  • Тураноза
  • Целлобиоза
  • Мелибиоза
  • Генциобиоза
  • Вицианоза
  • Рутиноза
  • Изомальтоза
  • Кайибиоза
  • Инулобиоза
  • Изомальтулоза
  • Лактулоза
  • Ламинарибиоза
  • Люкроза
  • Мальтулоза
  • Робиноза
  • Софороза
  • Трегалулоза
  • 3α-Маннобиоза
  • Аллолактоза
  • Мелибиулоза
Трисахариды
  • Рафиноза
  • Мелицитоза
  • Мальтотриоза
  • Изомальтотриоза
  • Генцианоза
  • Солатриоза
  • Целлотриоза
  • Эрлоза
  • Паноза
  • 1-Кестоза
  • 6-Кестоза
  • Инулотриоза
  • Фукозиллактоза
  • Маннотриоза
  • Неокестоза
Тетрасахариды
  • Акарбоза
  • Стахиоза
  • Нистоза
  • Мальтотетраоза
  • Фруктозилнистоза
  • Инулотетраоза
  • Рамниноза
Пентасахариды
  • Мальтопентоза
  • Вербаскоза
Гексасахариды
Олигосахариды
  • Фруктоолигосахариды
  • Галактоолигосахариды
  • Маннанолигосахариды
  • Изомальтанолигосахариды
  • Мальтодекстрин
Полисахариды
  • Гликоген
  • Крахмал
  • Целлюлоза
  • Хитин
  • Амилоза
  • Амилопектин
  • Сахилоза
  • Фруктаны (Инулин, Леван)
  • Декстран
  • Декстрин
  • Пектин
  • Галактан
  • Маннан
  • Ксилан
  • Арабан
  • Галактоманнан
  • Агароза
  • Лихенин
  • Пуллулан
Углеводы
Общие:
  • Альдозы
  • Кетозы
  • Фуранозы
  • Пиранозы
Геометрия
  • Аномеры
  • Мутаротация
  • Проекция Хоуорса
Моносахариды
Диозы Альдодиоза (Гликольальдегид)
Триозы
  • Кетотриоза (Дигидроксиацетон)
  • Альдотриоза (Глицеральдегид)
Тетрозы
  • Кетотетроза (Эритрулоза)
  • Альтотетрозы (Эритроза, Треоза)
Пентозы Кетопентозы (Рибулоза, Ксилулоза)

Альдопентозы (Рибоза, Арабиноза, Ксилоза, Ликсоза, Апиоза )

Дезоксисахариды (Дезоксирибоза)

Гексоза Кетогексозы (Псикоза, Фруктоза, Сорбоза, Тагатоза)

Альдогексозы (Аллоза, Альтроза, Глюкоза, Манноза, Гулоза, Идоза, Галактоза, Талоза)

Дезоксисахариды (Фукоза, Фукулоза, Рамноза)

Гептозы Кетогептозы (Седогептулоза, Манногептулоза)
>7
  • Октозы
  • Нонозы (Нейраминовая кислота)
  • Сиаловые кислоты (N-ацетилнейраминовая кислота)
Мультисахариды
  • Дисахариды
  • Трисахариды
  • Тетрасахариды
  • Пентасахариды
  • Гексасахариды
  • Олигосахариды
  • Полисахариды
Производные углеводов
  • Аминосахара
  • Фосфосахара
  • Ангидросахара
  • Гликозиды
  • N-Гликозиды
  • Гликали
  • Гликоны
  • Енозы
  • Гликозеены
  • Гликозаны
  • Гликаны
  • Глюканы
Гликозаминогликаны
  • Гепарин
  • Гепаринсульфат
  • Хондроитин
  • Хондроитинсульфат
  • Гиалуроновая кислота
  • Гепаран
  • Дерматан
  • Дермантансульфат
  • Кератан
  • Кератансульфат
  • Пептидогликан
  • Хитозамин
  • Хондрозамин
Аминогликозиды
  • Канамицин
  • Стрептомицин
  • Тобрамицин
  • Неомицин
  • Паромомицин
  • Апрамицин
  • Гентамицин
  • Нетилмицин

Эта страница в последний раз была отредактирована 14 марта 2019 в 21:15.

Виды углеводов

Выделяют три основных вида углеводов:

  • Простые (быстрые) углеводы или сахара: моно- и дисахариды
  • Сложные (медленные) углеводы: олиго- и полисахариды
  • Неусваиваемые, или волокнистые, углеводы определяются как пищевая клетчатка.

Сахара

Различают два вида сахаров:

  • моносахариды – моносахариды содержат одну сахарную группу, как, например, глюкоза, фруктоза или галактоза.
  • дисахариды – дисахариды образованы остатками двух моносахаридов и представлены, в частности, сахарозой (обычный столовый сахар) и лактозой.

Сложные углеводы

Полисахариды представляют собой углеводы, содержащие три и более молекул простых углеводов. К данному виду углеводов относятся, в частности, декстрины, крахмалы, гликогены и целлюлозы. Источниками полисахаридов являются крупы, бобовые, картофель и другие овощи.

Почему сахар вреден?

Сахар относится к быстрым углеводам. этого продукта составляет 70 единиц. То есть при употреблении сахара в пищу очень быстро повышается уровень глюкозы в крови. не несут для организма никакой пользы. Ограничить их потребление следует всем людям, а некоторым требуется и вовсе исключить сахар из рациона. Небольшое количество быстрых углеводов разрешается только людям, испытывающим интенсивные физические нагрузки, поскольку они способствуют максимальному сжиганию жирных кислот и эффективному похудению.

«Белая смерть» — так называют сахар врачи и диетологи. Он приводит к развитию ожирения, вызывает ряд заболеваний. Сахар негативно влияет на работу сердца, нарушает кровообращение. Поэтому людям, которые входят в группу риска, следует употреблять в пищу исключительно несладкие фрукты. Что входит в их список?

Биохимические свойства

От функциональных групп моносахаридов зависят и их свойства. Соответственно, они могут вступать в реакции окисления и восстановления.

В результате окисления моносахаридов создаются разные классы кислот. Альдоновые кислоты – последствие окисления альдегидной группы С1 –атома до карбоксильной группы. Альдаровые кислоты возникают после окисления альдегидной группы или первичной спиртовой С6– атома углерода. Альдуроновая кислота создается вследствие окисления первичной спиртовой группы С6-углерода.

Восстановление моносахаридов под воздействием ферментов или других веществ сопровождается образованием полиспиртов, например, сорбитола или рибитола. Последний, кстати, является компонентом .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector